
NASA    CONTRACTOR 

REPORT 
NASA   CR-106 

<•» 

Agmoved tot p-ibidc teiecsssj 
DssmcuaoK yxvUsut-t-'* :-\- 

;«;■•' 

THE UNIFORM-STRESS SPINNING 
FILAMENTARY DISK 

by A. C. Kyser 19960327 113 
t'Wi C:J:J3!::7 V '>of^OISB I 

Prepared under Contract No. NASw-652 by 

ASTRO RESEARCH CORPORATION 

Santa Barbara, Calif. D-;  . „. .    ; , 

f°r PLASTICS TECHNICAL EVALUATION CENTER 
PICATINNY ARSENAL, DOVER, N. J. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION •    WASHINGTON, D. C. 

■tf 

v 

• 

::' 

  



THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE 

COPY FURNISHED TO DTIC 

CONTAINED A SIGNIFICANT 

NUMBER OF PAGES WHICH DO 

NOT REPRODUCE LEGIBLY. 



NASA CR-106 

THE UNIFORM-STRESS SPINNING FILAMENTARY DISK 

By A.  C. Kyser 

Distribution of this report is provided in the interest of information 
exchange and should not be construed as endorsement by NASA of 
the material presented. Responsibility for the contents resides 
in the  author or organization that prepared it. 

Prepared under Contract No.  NASw-652 by 
ASTRO RESEARCH CORPORATION 

Santa Barbara,  Calif. 

for 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Di'iU tgüiLLbii iiSöPISGTED i 



CONTENTS 

ABSTRACT 

Page 

1 

SECTION I NOMENCLATURE 

SECTION II INTRODUCTION 

2 

3 

SECTION III        DEVELOPMENT OF THE CURVATURE 
EQUATION 

SECTION IV INTEGRATION OF CURVATURE 
EQUATION 

SECTION V DETERMINATION OF ARC LENGTH 10 

SECTION VI        DETERMINATION OF CENTRAL ANGLE 

SECTION VII       DISCUSSION OF CURVE SHAPE 

REFERENCES 

11 

12 

16 

in 



ABSTRACT 

An analysis is presented for the development of the fiber pat- 

terns necessary to produce uniform fiber tension in a spinning filamen- 

tary disk.    The family of fiber patterns for such isotensoid disks is 

described in terms of curvature,   slope,   and arc length,   and means are 

suggested for obtaining polar-coordinate plots of the patterns.    Included 

are diagrams of three of the patterns,   a photograph of a model,   and a 

discussion of the general characteristics of the family of allowable pat- 

terns.    It was found that the isotensoid disk design with which the disk 

is covered by uniform-diameter fibers operates at half the stress of a 

simple hoop,   for a given tip speed and fiber mass per unit length. 



I.     NOMENCLATURE 

r —       radius coordinate 

r —       radius of disk 
o 

R —       r/r    ,   nondimensional radius coordinate 
o 

ß —       angle between fiber and radius vector 

p —       radius of curvature of fiber 

CO —       rotation speed of disk 

m        —       mass per unit length along fiber 

2   2 
Cl —       m'to r   /T   ,       fiber loading parameter 

o 

F' — interfiber shear force per unit length 

T — tension in structural fiber 

9 — angle swept by tangent to fiber 

<p — central angle coordinate 

t — arc length along fiber,   measured from periphery of disk 

L, —       t/r        nondimensional arc length 
o 

2 
\ —       R    ,   nondimensional radius coordinate 

s —       stress in structural fiber 

y —       weight density of fiber material 

X —       sly   ,      specific strength of fiber 

v —       tip speed of rotating disk 
o 



II.    INTRODUCTION 

This note presents the analytical development of a uniform- 

stress (isotensoid) spinning disk composed of structural filaments of 

uniform cross section.     The filamentary arrangement is that of a fine- 

mesh circular net in which the fibers form curved load-carrying paths 

that spiral outward from the center.    It can be shown that any spiral net 

will carry a radially-directed loading in such a way that the resultant 

fiber tension decreases toward the center of the net.    This tension gra- 

dient is the result of the spiral load-path curvature.    The fiber tension 

resulting from the inertia forces due to rotation,   on the other hand, 

tends to increase toward the center.    The constant-tension condition 

can be imposed by arranging for the curvature distribution to be that 

which is necessary to allow these two tension-gradient effects to cancel. 

This work may be considered an extension of the work done 

in References 1 and 2.    In Reference 1 a theory was developed for pre- 

dicting equilibrium shapes of filamentary structures in which the struc- 

tural loads are carried in pure tension.    This paper was specifically 

concerned with normal loads on the fiber (i. e. ,   pressure loads),   and 

the solutions were presented in terms of differential equations describ- 

ing the local curvature and/or slope of the structural wall in terms of 



the local conditions.    In Reference Z this problem was generalized to 

include load components tangential to the structural wall (from centrif- 

ugal effects),   and solutions for the curvature and slope equations were 

obtained in the form of elliptic integrals.     The present note represents 

a further generalization;   in that allowance is made for an internally- 

generated shear stress in the filamentary wall. 

This type of structure is proposed for space applications 

where requirements exist for large rotating surfaces in which the loads 

generated by the mass of rotating structure are important.    One such 

application is suggested by Reference 3,   which discusses the use of a 

lightweight woven fabric net as a low-loading,   low-temperature,   rotat- 

ing wing for re-entry deceleration.     Other possible applications   include 

the use of filamentary disks to support large surfaces for the collection 

or reflection of radiant energy.    It is believed that an isotensoid disk 

of this type,   in addition to having the excellent mechanical properties 

characteristic of filamentary structures,   can be made to have a high 

structural efficiency. 

The work reported here was conducted with the financial sup- 

port of the National Aeronautics and Space Administration. 



III.    DEVELOPMENT OF THE CURVATURE EQUATION 

The structure under consideration is a spinning filamentary- 

disk having the form of symmetrical spiral net with a differentially-fine 

mesh,   the clockwise-outward-directed fibers being attached point-by- 

point to the counterclockwise-outward fibers.    A typical intersection 

between opposing fibers is shown in Figure 1.     Each branch has a local 

radius of curvature  0  and meets the radius vector at an angle  ß   . 

The forces acting on a differential length  dl  of the clockwise- 

outward fiber are shown in Figure 2.     The tension forces,   shown dashed, 

are added and resolved into forces normal to and tangential to the fiber, 

/   2 
Tdi/p  and  dT   .     The radially-directed inertia force is  m CO r d t   , 

where  m' is the mass per unit length.    The force  F dl   is the interfiber 

shear force,   or the force exerted on the element of the clockwise- 

outward fiber by the corresponding counterclockwise fiber.    This force 

must be equal and opposite to the force on the counterclockwise element 

at this point.    For reasons of symmetry,   then,   it must lie in the cir- 

cumferential direction,   normal to the radius vector. 

From the diagram it can be seen that equilibrium requires 

that 

2 T 
m'oo r dl sinS  +  F'dl cosjS   =   — d-t (1) 



and 

m'to r d-t cosj3   -   F'd-t sing   =   —— dl     . (2) 
d t 

Equations (1) and (2) can be simplified by calling 

n = 

> 
m 

2 
00 

2 
r 
o 

T 

R = 
r 
r 
o 

• 

(3) 

The uniform-stress condition can be imposed by making   Q = const.    , 

assuming  that the structural cross section of the fiber is proportional 

to the mass per unit length.    If it is assumed,   further,   that  m' = const.    , 

then  T = const.    ,   and 

IT = «   • 

Equations (1) and (2) then reduce to 

p    _   sing 
r      =   7TF (5) 
o 

and 

/   2 n /   _   m 00 r    _   ClR     _T 
tani3      "   tang    r ' (6) 

o 

Equation (5) is sufficient to define the geometry of the fiber 

pattern for any given value of the parameter  Q, .    It is possible to es- 

tablish the family of patterns,   without further analytical work,   from 

this radius of curvature equation by a graphical integration process 

using a compass and protractor. 



The structural requirement for transferring shear between 

fibers can be seen from Equation (6).    It should be noted that the path 

of a given fiber need not actually follow a continuous spiral,   but may 

instead follow a zigzag pattern,   in the circumferential direction,   be- 

tween adjacent circles of intersections.    For this type of fiber pattern, 

there is no tendency for the intersection to slide,   and therefore there 

is no requirement for transferring shear. 



IV.     INTEGRATION OF CURVATURE EQUATION 

Equation (5) can be integrated to give a relation for  p  (or 

sin/3)   as a function of  r   as follows:   From Figure 3 it can be seen that 

dß   =   (ß  +  dß)   - ß   =   d6   -   d<p     . 

JO d r d r tan ß Also, dB   =      ; dco   =     
p cos ß r 

r *i d£ 1 tanj3 Consequently, ——   =   „    -          , 
dr p cos ß r 

dß _ o sin/3 
— cos^    =   -    -   -^-     . (7) 

Equation (7) can,   of course,   be obtained from the standard form of the 

radius of curvature in polar coordinates.     This relation can be com- 

bined directly with Equation (5) to eliminate  djS/dr   if (5) is expressed 

in a differentiated form: 

a dß       Q, n   dp   ,    a ._ , cosS —^  =   — R   —E-   +   —p      . 5a H  dR        r dR r   H 

o o 

Equating (5a) to (7) and substituting Equation (5) to eliminate  ß   gives 

a separable linear differential equation in p(R)   : 

^^T -  " 4 "    • (8) 

2        ro 
P     -   20 

In integrating this expression,   the initial conditions are taken as those 

at the point at which the fiber is tangent to the outer periphery: 



R   =   R     =    1   ,  ß = ß     =   V/2   .    Here  p     =   r ID. .    These conditions 
o o o o 

establish the upper limits for the integration. The lower limits are 

taken at the generic point along the fiber curve. This process gives 

for the radius of curvature 

r \ /   R 
o 

(9) 

If this expression is combined with Equation (5),   it gives 

2 
.  2„ OR 

sm p    = 1+(2-n\ i 

2 L   v" yR
4j (10) 

Either of Equations (9) or (10) suffices to describe the fiber 

pattern for graphical integration;    Equation (9) may be used in a step- 

wise forward integration with a compass,   while Equation (10) may be 

used to construct a slope field through which a continuous path may be 

faired. 



V.     DETERMINATION OF ARC LENGTH 

The arc length I   included between two points along the curve 

can be established by an integration of the relation 

d r d r 
dl 

cos ß (H) 

1  - sin ß 

which can be written by inspection of Figure 3.    If Equation (10) is 

substituted for   sinß  ,   and if the independent variable is changed to 

2 
X = R     ,   then the nondimensional arc length   L   can be expressed as 

the integral 

1 
, i*  

R 

(12) 

*  + n* 
2 - n 
a 

This integral is evaluated in Reference 4.     After accounting for the 

limits,   it is possible to express the arc length as 

L   = 
V    ,       ,-11- ßR 
2 + sm    l"n^T- (13) 

Equation (13)  is extremely usefu]  in making graphical constructions 

of fiber patterns,   in that it provides a reference to the starting point 

which is not affected by cumulative errors in the graphical integra- 

tion process« 

10 



VI.    DETERMINATION OF CENTRAL ANGLE 

The determination of the central angle <p is desirable to 

complete the description of the fiber patterns.     To find <p  as a func- 

tion of R   it is necessary to integrate the expression (see Figure 3) 

sinS   dl     , „ , 
d*   -       R       dT   dR     • <14) 

If the appropriate expressions are substituted into Equation (14) to 

2 
define  dip as a function of  R  and then the substitution X  = R    is 

made,   the result is the integral 

2cp(R)    =    J1 *d* +    j1   Cd*   

R
2 y(- X  + ßX - C)(x2 + C) R2   xy(- x

2 + ßx - C)(x   + C) 

where ß = ^-    ; C^-l      . 

These integrals are evaluated in Reference 5 in terms of the elliptic 

integral of the third kind.     The solution for the  Q>2   cases differs 

from that for the  £l<2  cases because of the difference in the nature 

of the roots of the quartic under the radical.    There are,   therefore, 

four different integrals to be evaluated,   each of which has its own set 

of coefficients in terms of the roots of the quartic.     Consequently, 

this description of the curve family is somewhat unmanageable.    Fur- 

ther details of this solution will therefore be omitted. 

11 



VII.     DISCUSSION OF CURVE SHAPE 

Equations (9) and (10)  can be used to identify two distinct 

types of curves in the one-parameter family which includes   fl^ 1   . 

(Note that   O < 1   produces a contradiction,   since it gives   p   > r     , 
o        o 

which requires that   r = r    be a local minimum instead of maximum. ) 
o 

These two curve types are bounded by O = Z   :   for   £2< 2   ,   p  must 

increase with decreasing   R   ,   and for   £2 > 2   ,    p must decrease.    The 

former   (£2< 2)   condition produces an annular band of fiber paths,   as 

in Figure 4   (£2 = 3/2)   ,   which are characterized by smooth,   continuously- 

turning curves that are tangent alternately to the outer periphery and 

some inner periphery.     The radius of the inner periphery can be found 

by setting     sin/3 =1   in Equation (10).     This gives 

R    . 2   =   | -   1     • (16) mm \l 

For   £2=1   ,   Equation (9) gives  p   = r     ,   which is  simply the circular 
o       o 

hoop. 

The   £2 = 2   case has  special importance because it is the 

only case which includes the origin and therefore covers the disk.     For 

this case,   o= r  /2 ~ const.    ,   and the fiber curve is  simply a circle 
o 

tangent to the periphery and passing through the origin.     This pattern, 

which is diagrammed in Figure 5,   was the one chosen for the model 

12 



shown photographed in Figure 6.    This pattern has the somewhat star- 

tling property that it can be mapped,   without changes in arc lengths, 

from a rectangular net having a length-to-width ratio of four,   and con- 

sisting of square meshes at 45    to the axis of the rectangle,   as shown 

in Figure 7.     This property arises from the fact that two circular fiber 

paths,   whose centers are displaced on the disk by a central angle <p  , 

intersect at values of arc length I - Zptp - r  <0  ;   for a center dis- 

placement of  2<p ,   the arc lengths to the intersections are I = 2 r <p  ; 

etc. 

The curves   £l> 2  are characterized by the fact that   sin/8 

and  0 both vanish at some value of R   ;   these curves have radially- 

directed cusps at a value of  R  which can be determined by setting 

either  p  or   sin)3  to zero in Equations (9) or (10).    This gives 

(17) 4 ?, 
R    . 1 

mm a 

Figure 8 shows the fiber pattern for  Q, = 3   . 

The  0>2   curves are not structurally self-sufficient;    each 

cusp must be supported by a radial force of  2 T   .    These radial forces 

could be provided by radial spokes,   a hoop,   or a fiber system com- 

prised of any one of the  fi > 1   curves properly truncated to allow for 

residual radial forces at the truncation radius. 

The truncation process can,   of course,   be applied to both 

the inner and outer peripheries of an annular band of a spiral net.    Such 

13 



a band could be spliced at its two peripheries to other  similar bands 

(having the same fiber stress,   for example).     In general,   these neigh- 

boring bands would each have a different reference radius   r    and a 
o 

different   Q, .     This process,   taken to the limit,   could be used to pro- 

duce a uniform-stress disk using tapered filaments. 

The parameter  £1  establishes the relation between tip speed 

v   - CO   r    and fiber stress   s   .     The maximum tip speed   (v )   ,     of which o        o   o r    r * Q/ult 

a disk of a given material is capable can be determined by substituting 

the specific  strength   X   of the structural material for the ratio of break- 

ing strength   T        to mass per unit length,   as follows: 

s A. T 

^—   ■    ^     -    -^ (18) v A ' r A
f m g 

where  y   is the weight density of the material and   A    is the cross- 

sectional area of the fiber.     If this  condition is  substituted into Equa- 

tion (3),   which defines   Q ,   the ultimate tip speed is seen to be 

(vo}ult   =     V^"     • (19) 

Thus a higher  Cl   allows a higher ultimate tip speed, 

If the radius of the hub is given,   the choice of  Q,   is narrowed 

2 
to a range of values given by Equation (10) by setting   sin ß  at the limits 

of 1  and 0.     These values of  Q,   are those determined by Equations (16) 

and (17).     For intermediate values of  Cl  the fiber curve will intersect 

the hub radius at an angle   ß which can be determined from Equation (10), 

Since the radial component of fiber tension,    T cosjS   ,   must be carried 

Ik 



by the hub,   the load-carrying ability of the hub may be used to deter- 

mine  Cl  uniquely. 

It should be recognized that the conditions governing the de- 

sign of filamentary disks for use as items of hardware are likely to be 

such that the idealized disk analyzed here is only a point of departure. 

As an example,   if the disk structure were required to support a reflec- 

tive surface,   then m'   would probably be dependent on radius.    For such 

a case the details of the solution given here will have to be modified. 

The basic curvature equation is general,   however,   and solutions can be 

extracted for any set of conditions that can be defined explicitly in 

terms of radius. 

15 
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Figure 1.   Local Geometry of Fiber Pattern. 

T + dT '   2    ., 
m w rdl 

Figure 2.   Forces on Fiber Element. 
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Figure 3.   Radius of Curvature in Polar Coordinates. 

Figure 4.   Fiber Pattern for Isotensoid Disk,  0 = ^ 
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Figure 5.   Fiber Pattern for Isotensoid Disk, 0 = 2 

Figure 6.   Photograph of Model Isotensoid Disk on Spin Stand. 
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Figure 7.   Mapping of Rectangular Net into Q-2  isotensoid Disk. 

20 

Figure 8.    Fiber Pattern for Isotensoid Disk,  £1 = 3   . 
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